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ABSTRACT

On the basis of recent observations, simple mathematical

models representing the magnetic field distribution in photo-

spheric layers of the sun are proposed. The structure of the

resulting fields in the outer atmosphere and, in particular,

the behavior of neutral points is discussed. The expected

trapping of charged particles is compared with relevant ob-

servations. Several suggestions for further experimental and

theoretical studies are advanced.



TABLE OF CONTENTS

Page

LIST OF FIGURES

1. INTRODUCTION 1

2. FLARES AND MAGNETI C FIELDS 4

3. MAGNETIC FIELDS IN THE OUTER ATMOSPHERE 7

4. EXTENSION OF PHOTOSPHERIC FIELDS INTO

THE CORONA 10

5. MATHEMATICAL MODELS FOR FORCE-FREE FIELDS 12

6. MULTIPOLAR FIELDS 18

7. NEUTRAL POINTS 24

8. HEIGHT BEHAVIOR OF NEUTRAL POINTS IN

COMPLEX FIELD STRUCTURES 33

9. EFFECTS OF DIFFERENT MAXIMUM POLE STRENGTHS IN

BIPOLAR GROUPS 42

10. DISCUSSION OF PHOTOSPHERIC OBSERVATIONS 47

11. LOCAL FIELDS IN THE CORONA 58

APPENDIX: LOCAL FIELDS AND CURRENTS IN

THE CORONA 71

CONCLUSIO NS 77

REFEREN CES 8o



LIST OF FIGURES

Page

Fig. 1. Spherical coordinate system. 15

Fig. 2. Linear quadrupole field. 19

Fig. 3. Plane quadrupole field. 19

Fig. 4. Dipole field. 19

Fig. 5. Four pole configuration which produces a

dipole field in the far-away zone. 19

Fig. 6. Field of a plane quadrupole in the first

quadrant. 23

Fig. 7. Neutral point in the y-z plane due to two

equal poles at x = +d and -d. 27

Fig. 8. The function p6 (2p2 - 1)2 of Equation (62). 27

(p2+ 1)5

Fig. 9. Configuration of quadrupoles on x-axis,

Case IIa. 29

Fig. 10. Configuration of quadrupoles on x-axis,

Case Ib. 29

Fig. 11. Configuration of quadrupoles on y-axis. 31

Fig. 12. Configuration of quadrupoles on y-axis. 31

Fig. 13. Field in quadrupole midplane. 32

Fig. 14. Neutral point for unit poles at x = +d and

pole of strength n(>O) at D. 36

Fig. 15. Neutral point for unit poles at x = id and

pole strength n(>O) at D. 36



Page

Fig. 16. Details of Hx for two equal poles at x = *d. 37

Fig. 17. Field for poles of strength +1 and -n at

x = -d and x = +d respectively. 44

Fig. 18. Inclination of line along which field is

horizontal, for the case of two poles of

unequal strength. 45

Fig. 19. Isogauss contours in a spot region

(Michard et. al., 1961). 48

Fig. 20. IdentifLcation of points of interest in

Figure 19. 48

Fig. 21. Hz/A at z = 2 for two positive poles at

x = +5 and -5. 52

Fig. 22. H z/A at z = 12.5 for two positive poles at

x = +5 and -5. 53

Fig. 23. Hz/A at z = 12.5 for a positive pole at

x = 0. 53

Fig. 24. Positions of maxima of Hz for equal poles

at x = +d and -d. 54

Fig. 25. Position of spot group on the sun, April 23,

1960. (Michard et. al., 1961) 55

Fig. 26. Modification of Fig. 22 for inclined line of

sight. Two equal poles on x-axis. 57

Fig. 27. Modification of Fig. 23 for inclined line of

sight. Single pole on x-axis. 57

Fig. 28. Arrangement of single poles producing a NP

at x = 1.84 D. 64



Page

Fig. 29. Field of two combined quadrupolee in the

plane y =0. 65

Fig. 30. Square of the total field strength (in

units of 2 Ad) in the plane y = 0 for two

combined quadrupoles at x = +D and -D, for

D = 10. 67

Fig. 31. Square of the total field strength (in

units of 2 Ad) in the plane x = 0 for two

combined quadrupoles at x = +D and -D, for

D = 10. Note neutral line. 69



1

1. INTRODUCTION

It became increasingly clear in the last several years that the

existence of strong magnetic fields in the outer atmosphere of

the sun plays a dominant role in the origin and development of

disturbances. Unless the mechanism is understood by which these

large-scale fields can be produced and maintained, little hope

exists for a physically satisfactory explanation of the surpris-

ing variety of phenomena summarized in the notion of solar

activity. With the increasing interest in space exploration in

the years ahead, the strong relationship between the behavior of

the interplanetary medium and solar activity becomes even a

practically more and more important problem, in particular, since

the momentaneous state of the local space environment is one of

the factors deciding upon success and failure of some of our space

programs.

The at first glance highly irregular occurrence of solar events

has rendered so far all precise prediction schemes unsuccessful,

in the sense, that, for instance, the onset of a major solar

flare cannot be anticipated at a reasonably well defined moment,

although there exists a great number of statistical relationships

between, say, sunspot number and flare activity. Statistical re-

lations alone, however, are not too helpful in most situations of

practical importance.
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With the increased emphasis on magnetic fields in the context

of solar disturbances, in particular, of solar flares, it is

oaly natural to attempt to correlate features of these fields

with certain pecularities of flare events. So far, detailed

work has resulted in little progress beyond the basic concepts

of magnetogasdynamics. The reasons for this stagnation are two-

fold and in neither case easily remedied: firstly, only a

limited number of physical processes depend in an observationally

useful manner on direction and strength of magnetic fields, thus

making it extremely difficult to secure a sufficient variety of

observational information on the magnetic field quantities.

Secondly, the theoretical relationships combining magnetic field

behavior and, in particular, non-thermal processes on the sun are

still largely unknown, with the mathematical formalism being pro-

hibitively complex. It was therefore felt that a general re-eval-

uation of our present-day knowledge might be of some use. SpecL-

fically, the several postulated connections between magnetic fields

and observed phenomena were thought to offer possibilities for

further work (Section 2).

The procedure adopted in this report is then the following: since

direct observational evidence for fields is essentially limited

to the height levels of the upper photosphere, whereas a number

of phenomena occurring in the outer atmosphere is clearly connected

in some way or another with the extension of these fields into the



chromosphere and corona (Sections 3 and 4), we attempted to

derive simple mathematical models which were adjusted in such

a manner that the photospheric observations are satisfactorily

represented (Sections 5 and 6). Neutral points, i.e., points

in which the total magnetic field strength vanishes, are dis-

cussed in Sections 7 and 8. The effects of different pole

strengths of leading and following spot in a bipolar group are

examined in Section 9. Recent observations of the line-of-sight-

component of field strengths in a small group are interpreted in

terms of the presented field models (Section 10). Finally, the

influence of the coronal plasma itself on the field distribution

is discussed in Section 11, with an Appendix in which the forma-

lism for investigating local fields that originate in the corona

is presented.



2. FLARES AND MAGNETIC FIELDS

During solar flares, two major non-thermal processes take place:

the acceleration of particles to cosmic ray energies, and the

emission of electromagnetic radiation exceeding thermal values

(i.e. the black body equivalent of the order 106*K) by large

factors.

It is assumed here that the electromagnetic radiation is a by-

product of the production of fast particles, in the sense that the

relativistic or nearly relativistic particles during or after accel-

eration emit the x-rays observed directly as well as indirectly, and

that the radio frequency radiation is due to some kind of interaction

mechanism with the surrounding corona, yet to be specified.

For the primary process, that is, the acceleration mechanism, electric

or magnetic forces could be made responsible on a strictly conceptual

basis. However, due to the high conductivity of the solar material,

the existence of stationary, large-scale electric fields is virtually

impossible, except where strong temperature gradients exist, say,

at the transition of chromosphere and corona, and in the neighborhood

of prominences. These fields have in principle nothing to do with

solar flares.

Hence, the conclusion is that whatever electric fields may be present

at the time of a solar flare must be of a type that varies so fast in



time that the accompanying magnetic fields are not negligible. It

is then merely a matter of definition whether one attributes the

acceleration primarily to the fast varying electric fields or to the

magnetic fields.

Taking this concept as the basis for the further discussion, one has

to specify the origin of these fast varying fields postulated for

the initial state of the flare. "Initial state" stands here.in the

sense of "at the beginning of the Ha event." The most thorough dis-

cussion of this problem is due to Giovanelli (1947, 1948)*, later ex-

panded by Hoyle (1949), although at least the detailed calculations

and model assumptions are open to justified criticism; cf. Cowling

(1953) and Dungey (1958).

The essential point of Giovanelli's theory is the suggestion that a

solar flare comes about by some sort of breakdown, releasing instan-

taneously a large amount of electromagnetic energy in the form of

heat. Severny and co-workers (Severny 1958, 1960; Bumba 1958; Step-

anov 1960) have taken up this idea and suggested that some particles

in this process reach relativistic energies, high enough to induce

thermofusion reactions sustained for enough time to increase further

the energy production. A direct verification of this latter con-

clusion by observing a substantial increase in the intensity of the

deuterium lines has so far not produced unambiguous evidence.

*References will be found at the end of the text.
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In particular, the discharge theory needs the existence of a

"1neutral point" ("NP") in the magnetic field at which the total

magnetic field strength vanishes; cf., for instance, the pictures

given by Sweet (1958). A NP appears whenever more than one mag-

netic pole of a certain sign is present in a group of poles. The

existence and position of NP's is therefore a problem whose solu-

tion is vital for the interpretation of solar flares. Attempts

to predict NP's for a given magnetic field configuration will be

discussed in later sections.

Severny has stated that the flares observed in Ha develop around

or above NP's. His analysis has been criticized for several rea-

sons. First, the accuracy of magnetic field measurements achieved

under normal seeing conditions is usually too poor to allow for

detailed magnetic maps. This point has been emphasized by Michard,

Mouradian and Semel (1961). Second, the NP's inferred from mag-

netic maps are guesses, since it is impossible to decide on the

basis of the conventional measurements whether a NP is situated

in the photosphere or chromosphere, or below the limit of visi-

bility. Third, recent careful measurements of the magnetic field

configuration in multipolar spot groups show that flares develop

not so much around projected NP's but in regions with predominantly

"transverse," that is, horizontal fields, for instance, along the

dividing line between N and S poles where no NP's are possible

(Bruzek 1958, 1960). Finally, another point of disagreement

among observers, however of minor interest for our purposes,
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involves the question of whether during a flare event the mag-

netic field configuration changes drastically. Severny and co-

workers (loc. cit.), and Evans (1959) have seen such an effect,

but observations by Bruzek (1960), Howard et al. (1959), and

Michard et al. (1961) indicate no such change.

It is obvious from the foregoing discussion that a knowledge of

the magnetic field configuration in areas and heights where

flares are expected is vital for a physical understanding of the

flare phenomenon. Lacking observational information, one might

attempt to explore on a theoretical basis possible field configu-

rations. Before we go into details in this matter, a discussion

of the available evidence for the existence of magnetic fields in

the outer atmosphere seems appropriate.

3. MAGNETIC FIELDS IN THE OUTER AMOSPHERE

The horizontal extent of the magnetic fields of spot groups

reaches far beyond the photospheric extent of the group. Evidence

to this effect is the formation of long-lived prominences at the

outskirts of spot groups later in their development, as shown for

instance by a comparison between photospheric magnetic field dis-

tributions and prominences (Babcock and Babcock 1958). The cool

dense prominence material can only be kept stable in the surround-

ing hot dilute corona by magnetic fields which prevent a fast decay

due to gravitational forces.
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The radial extent of the fields can be inferred from the coronal

ray structure above sunspots which involves a considerable mat-

ter increase in this area. Again, gravitational forces and hori-

zontal diffusion would lead to a fast decay, if no magnetic for-

ces would prevent the outflow of the ionized matter from the

region above the spots.

The coronal ray structure is of particular interest, since the

direction of magnetic fields can be inferred from the ray struc-

ture, if one makes certain assumptions on the coincidence of

matter condensations and magnetic fields. An interesting fea-

ture in this regard is the often observed inclination of coronal

rays against a radius vector from the sun's center which points

to an asymmetry in the underlying magnetic field structure.

This point will be discussed in detail in a later section.

Another set of observations useful for an estimate of magnetic

fields in the outer atmosphere are the radio interferometer data

showing the spatial motion (in one or two coordinates) of non-

thermal radio sources during and after solar flares. In several

instances, this motion clearly deviated from a radial one, sug-

gesting again asymmetries in the magnetic field structure.

Some additional remarks are necessary with respect to the combi-

nation of interferometer data and magnetic fields. The underly-

ing concept is that the motion of the source of radiation is
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determined by the direction of magnetic fields. In general,

two somewhat different theoretical possibilities for the

generation of non-thermal radiation are considered, namely,

the source being a shock wave, i.e., a disturbance travelling

with supersonic speed through essentially stationary material,

or a particle cloud travelling as a whole with subsonic speed.

In the latter case, the particles clearly Lave to move along

magnetic field lines (that is, in times too small to allow for

a substantial particle diffusion across the field lines). Hence,

they will move somewhere along the coronal ray structure. How-

ever, even for supersonic speeds this statement remains essen-

tially true, since the magnetic stresses will pull the shock

wave in a direction parallel to the field, although in the

shock front itself the magnetic field lines will of course be

deformed; cf. Glasstone and Lovberg (1960).

Once it is established that the fields in the corona result from

the particular geometry and strength of photospheric and sub-

photospheric fields, one expects a preferred field direction

related to the radius vector from the sun's center, but with a

statistical distribution of inclinations around it. Since the

magnetic field lines determine the path of charged particles

such as slow protons, responsible for various phenomena observed

in the earth's atmosphere, inclinations in particular cases may
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provide a directive effect on the emission of energetic

protons. This directivity appears in addition to the

general E-W asymmetry of solar proton sources, which has

been ascribed to solar rotation (Obayashi and Hakura 1960).

Its presence has been recently suggested by Noyes (1962).

4. EXTESION OF PHOTOSPHERIC FIELDS INTO THE CORONA

Outside of the regions where electric currents flow, the

magnetic fields are force-free, i.e.,

VxH =0

everywhere. Hence, if no currents flow, the atmosphere is

in simple hydrostatic equilibrium. Currents, through ohmic

heating, will dissipate the mechanical energy into heat, thus

pushing the system in time towards the force-free configura-

tion. From the same argument it follows that in steady state

the magnetic fields are force-free, at least, for times long

compared with a characteristic diffusion time of matter across

the field lines. Cowling (1953) points out that in this sense

the sunspots' (subphotospheric) fields are clearly not in a

steady state. However, it is generally agreed upon that no
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appreciable currents flow in the outer atmosphere; cf., Gold

(1958) and the discussion by van de Hulst (1958). The argu-

ment can be summarized in the sense that the bulk of the cur-

rent is subphotospheric, whereas a system of small currents

of a disturbance nature is required for an understanding of

coronal fields.

To first order, the photospheric field structure, due to

currents in subphotospheric layers, will then be essentially

force-free, with the photospheric fields extending unaltered

into the corona and further into interplanetary space. Super-

imposed on these force-free fields are small additional fields

due to local currents in the corona itself. This concept ex-

cludes clearly a confinement of the magnetic fields to the

photosphere and, maybe, lower chromosphere, with an essentially

field-free corona.

Force-free fields at large distance simulate more and more the

relatively simple multipole type. This type is clearly not

observed in the outer atmosphere with the long outstretched ray

structure. The existence of local coronal currents is put into

evidence by the increase in density above sunspot groups. In

a later section this question will be discussed in more detail.

First, however, we shall describe mathematical models for the

force-free fields in photospheric layers.
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5. MATHEMATICAL MODELS FCR FORCE-FREE FIELDS

On the basis of last section's discussion the following

model for the magnetic field distribution is adopted: it

is assumed that beneath the photosphere loop currents exist

whose centers coincide with longitude and latitude coordi-

nates of visible spcts. The height level at which these

currents flow is not further specified. The field distri-

bution in the photosphere, and above, is then essentially

identical to the field of a solenoid whose one end coin-

cides with the current loop. Since the observed fields

are in distant regions, we can bypass a detailed discus-

sion of nature and form of the currents themselves. As

a matter of fact, it is of no importance for our appli-

cations, whether the current loops are placed at 10,000

or 20,000 km below the photosphere.

Stratton (2941), whose units we transformed into conven-

tional e.s.CGS units, gives the following expressions for

the magnetic field components H and H (in cylindricalp z

coordinates) for a circular current loop situated in the

p-plane (z = 0) with the center at the origin:

HP 21 a (a + p)2+ z2 jj112 [-L 62- 2 E____ (2)
p = -(a - p) + z
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H - I(a + ) + z /22 2 2 E
Z C + )(a p) 2 + z2

I is the total current, c the velocity of light, a the radius of

the current loop. The magnetic susceptibility has been set equal

to one everywhere. K and E are the complete elliptic integrals

of the first and second kind and of argument

k 2 = 4ap • [ (a + p)2 + z2]-1"

Numerical calculations of the field components for p < a and

small z have been published by Blewett (1947).

For most of our purposes, the limiting expressions for

p >> a, z >> a

2
are sufficient (dipole field). They are obtained by expanding k

up to quantities of order

b 2 =a2/r ,

where

2 p2 2r =p +z *



14

We find

k2 = 4b P [1- 2b P- + 0 (03). (8)

Similarly

(a+ )2 +2] -112 1 { b +b 2r (12 1

a= )+ - + -) + 0 (b3) , (9)

2 2 2 2

a + p + z = 1 + 2b + b2  + 0 (b 3 ) (10)
2 2 r

(a - p)2 + z 2  r

2 2 2 L-2 ,
a p z - 1 + 2b - + b 2  -21 + 0 (b) . (11)

(a-p)2 + 2 r r2

Finally, we expand K and E (Dwight 1957):

K = Z [. + 2 + k4 + 0 (k) (12)

E = ! [ k 2 - k4 + 0 (k6) (13)

Inserting thcese expressions into Eqs. (2) and (3), the terms

O(b ° ) and O(b1 ) cancel out, and we obtain accurate to O(b 2 ):
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a2P C r5 p

The dipole character of the fields (14) and (15) is readily

verified by rewriting them in the conventional spherical system

of Fig. 1.

1/2 H
Hr -H P

Fig. i. 3pherical coordinate system.

We have

z = r cos G, r sin Q (16)

From the transformations

H = H sin e + H cos e (17)

H p z

H@ -H cose@- Hsin e (18)
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follow

H =I a 2 cos e (19)
r C r3

2
H = - • sin (20)

- C r 3

Eqs. (19) and (20) describe the field of a magnetic dipole with

moment
"I 2

M LI- a 2 (21)
C

It is instructive to esLimate the order of magnitude of the

electric currents required to produce the magnetic fields in the

photospheric region. In order to obtain an axial field of

H = 103 Gauss (22)

at a distance of

r = 104 km (23)

above the plane of the current loop of radius

a = 103 km, (24)

a total current

I = 1024 e.s. CGS (25)

is required. Letting this current flow in a cylindrical sole-

noid of thickness

d = 100 km (26)
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and height

h = 104 km , (27)

a specific current

j = I08 e.s. CGS (28)

results. Assuming a velocity of

v = 103 km/sec (29)

for the elementary particles responsible for the current, one

obtains

N = 2 x 09 cm "3  (30)

for the number of electrons (neglecting the slow protons) neces-

sary to maintain the current. Clearly this number is negligible

compared with the total number of particles per unit volume in

subphotospheric layers.
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6. MULTIPOLAR FIELDS

Before we can compare the field model described in the last

section with actual observations, we have to work out a few

simple relations which hold if more than one current loop

(corresponding to one single spot) is present. The aim of

this study is to lay the grounds for the explanation of more

complex field structures observed in sunspot groups.

We expect no principally new effects from this study, since

magnetic fields are strictly additive. Hence all results to

be derived follow from simple additions of field structures,

taking the respective geometrical conditions into account.

Note that a current loop represents magnetically a dipole as

shown in the last section, and that therefore an idealized

bipolar group has the quadrupole character to be discussed

below.

It is worth repeating that the occurrence of a NP in which

the total field intensity goes to zero is due to the presence

of more than one loop-dipole with the same orientation. Under

certain geometrical conditions it is possible that the field

configuration degenerates in the sense that the NP's are lo-

cated at infinity. Such an example is Fig. 2.

The field of two or more current loops in the far-away zone,

where the radius vector is large not only compared with the
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individual loop radii, but also with the respective distances

of the centers of the loops, does not have the familiar dipole

character. Simple examples are illustrated in Fig. 2 (linear

quadrupole) and Fig. 3 (plane quadrupole). Fig. 4 shows for

comparison the dipole field. This dipole field can result in

the far-away zone from the combination of four poles as in

Fig. 5.

Jc@D

Fig. 2. Linear quadrupole field. Fig. 3. Plane quadrupole field.

,"___ _. _ _ _ °
ED9

Fig. 5. Four pole configuration

which produces a dipole

Fig. 4. Dipole field, field in the far-away zone.
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In the following, simple multipole fields and their proper-

ties will be discussed. For our purposes, Eqs. (14) and

(15) which hold in the far-away zone of each current loop

(dipole fields) are sufficient. The condition

k 2 = 4ap [(a + p)2 + z2]-l < 1 (31)

effectively places a i.ower limit or. z. For .larger values

the aimpli'fied formulas (14) and (15) may be used irre-

bpective of the relative values of p and. a.

Since we lose the rotational symmetry by considering more

than one current loop at field points whose distances from

the ceaters of the loops are of the same order as the rela-

tive distances of the centers, we rewrite Eqs. (14) ani (15)

in rectangular coordinates:

H I 2 3xz (32)
x -C r5

y- a 2 3yz (33)y -C r5

n 2 2- 2 2 2
H I a- -r- (34)

where

2 2 2 2 (35)

Let us first consider the case of two loops lying in the same



plane, say the x-y plane, with their centers on the x-axis at

+d and -d. Assume that the absolute values of the currents and

the radii are the same for both loops, We then must distinguish

between the two possible arrangements of polarities: Case Ia, + +

and Case Ib, + With the plus sigL holding in Case Ia, the

minus sign in Case 1b, we have

Hr A 3 z x d5 r5 , (36)
+

H = A * 3zy r+5 (37)

'2 2 2 2 22

H2 Y (x + d) 2z y -x" , (38)

+

where

A - a 2 (39)

and

r= (x d)2 + y2 + z (4)

In the far-away zone of the quadrupole, that is, for

d << r+, r_; r+ f r m r, (41)

Case Ia reduces to the field of a dipole with twice the pole
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strength, as already mentioned in connection with Fig. 5.

The interesting case is Ib which reduces .o the field of

the plane quadrupolo (Fig. 3) and is obviously suitable as

a model for bipolar groups. The field components read, re-

taining only terms of order d,

H = A. 2d z 1- 2] (42)x r5 r-

r L

H = - A d , 3z (43)
r5 r2

-=- A . x [2 + . (44)

-4
Note that the quadrupcle field varies as r , as compared with

the r-' variation of the dipole field, Eqs. (14) and (15).

Let us briefly discuss the major features of the quadrupole

field (42) - (44), comparing them with the qualitative sketches

of Figs. (2) and (3). We specialize for this purpose to the

plane of symmetry where y = 0.

The field is pLurely horizontal (H z = 0) for all values

x = 0 or z = x/2. (45)
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On the other hand, the field is vertical (Hx = 0) whenever

z = 0 or z =2x. (46)

Finally, when

z = x, (47)

we have

H = Hz A=-= x2 (48)
x r 5 2

Fig. 6 shows this behavi'r in detail for the first quadrant.

z

/
/

000

I0 00,

Fig. 6. Field of a plane quadrupole in the first quadrant.
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7. JTR.L POINrS

Next we discuss some simple casas out of the various pos-

sibilities of encountering NP's in multipolar fields, in

particular, their relative posLtion and the height varia-

tion.. ak: a function of typical geometries.

NP's, of course, cannot occur in the far-away P:one. Hence,

we need the complete expressions of Eqs. (36) - (38) for the

quadrup&Le. The transition to the simplified formulas of

the far-away zone places the NP's in the boundary, or inside

of the rectangle formed by the four poles.

Consider first the case of the two poles of equal sign

situated at x = d and x = -d (case Ia, p. 21), which results

in a dipole field at great distance. This case corresponds to

two neighboring spots of equal polarity in a complex group.

The NP's occur, of course, in the line of symmetry, viz., for

x = y = O; H =H = 0 . (49)x y

From the conditions on the z - components of the field, viz.,

2z2_ d2
Hz = 2A d = 0, (50)z (z z2+ d 2 ) 512

we find for the height o" the NP:

z = :k d . (51)



Next, we compute the field distribution ir the y-z plane.

For x = 0 we still have

Hx = 0, (52)

whereas

Tz = 2A (53)
y d 2 + Y2+ 2'

2 d~2

Hz = 2A 
2 z - 2  (54)

Z d 2 + y2+ z2

The (hocizcntal) y-ccmpcnent vanishes only for

z = C or y = 0 , (55)

whereas the (vertical) z-component vanishes along the line

given by the relation

2 1 2 d2  (56)
Z = f~ (Y + d)56

A graphical representation is given in Fig. 7. Note the NP

at the intersection of the curve (56) and the z-axis. Above

the curve represented by Eq. (56), the z-field points upwards

for a given, choice of polarity, below it points downwards.

Second, we consider the linear quadrupole with plus poles

situated on the x-axis at x = +d and x = -d, the minus pole

with relative strength n at x = 0. This case is realized, for
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instance, if midwa between leading and following spot in a

bipolar group a third spot Ls found. Specializing again to

the plane of .symmetry y 0 we find

H A. 37, x+ d nxL x- d (7
Hx r 5 -n r 5 + r 5  ,(7

+

H 0, (58)

= 2z - (x + d) 2  2z- x2 2z2- (x - d) 2

z A r5  -n r r5  (59)
+

in the line of -ymmotry x = O, and

H = 0, (60)x

H {2 2z2- d 2 d2. (61)Hz(Z + d 2 ) 5/2 -z3

The condition for vanishing vertical field, H = 0, can bez

written in the form

2 6 (2p2- l) 
(

2

(p2+ 1)5(

where

p = z/d . (63)

The solution of Eq. (62) must be found by numerical methods.

We have plotted in Fig. 8 the right hand side of Eq. (62).

2
The intersection with the lines n =[right hand side of (62)]
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z

NP ~ z 2 = Y2(y2+d2)

-4 -2 0 2 y

Fig. 7. Neutral point in the y-z plane due to two equal.

poles at x = +d and -d.

R. S.(62) 4~

p6 (2p2 +_1)2 -

o from Eq. (62)

/ x from Eq. (65)

0
0 2 4 6 8 10 ~P

Fig. 8. The function p 6 (2.12of Equation (62).

(p2+ 1)5
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gives the heights of the NP's. For values

p >> (64)

Eq. (62) becomes approximately

n2= 4(1 - ) . (65)

p

The height behavior of the neutral points is very interesting.

For n = 1, the height equals almost exactly twice the half

distance between the two outer poles. Increasing the strength

of the middle pole moves the NP further and further up, until

for n = 2 (linear quadrupole in the strict sense) the NP is at

infinity. No NP occurs for n 2> 4 in the upper half plane.

For n < 1, the height of the NP decreases further reading

zero for n = 0, where the intersection points

p = z = 0 and z = d/vr2 (66)

lead back to Eq. (51).

Finally, let us consider the combination of two plane quadru-

poles. There are two extreme cases, which are of interest

with regard to sunspots. First, assume that the centers of

the quadrupoles are on the x-axis at x = D and x = -D, and

that their planes coincide. Such a system is realized by two

spot groups at the same latitude, their distance being 2D.
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Furthermore, let

D >> d, (67)

but not necessarily

D >> r, (68)

so that we might use the formulas for the far-away zone of

each quadrupole, but retain the complete expression as far

as their combination is concerned.

For the discussion of NP's, we need the x - component of the

field which reads

H = 6Adz l (xD) (x + D) (69)X r5 r7 r5 r7 j (9

where

2 2 2 2
r. = (x + D) + y + z . (70)

The plus sign combining the two expressions in the main

bracket of Eq. (69) applies to the combination of polarities

of Fig. 9 (Case IIa). The minus sign, corresponding to the

combination of polarities of Fig. 10 (Case IIb), is of less

interest for solar applications.

2 D - - - 2 D - -

Fig. 9. Configuration of quadru- Fig. 10. Configuration of quadru-

poles on x-axis, Case fla. poles on x-axis, Case Ilb.
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In the symmetry axis x = y a 0,

d z2 + D2 + 2 +D2 (71)x Lz 2 +D 2

In Case IIb, H is identically zero for all values of 5, i.e., noX

NP occurs. However, in Case IIa we have a neutral point at

z = 2D . (72)

H vanishes for all z-values.
5

Second, consider an arrangement of two quadrupoles on the y-axis

at +D and -D, with the planes of symmetry parallel between them-

selves and to the x-axis (Figs. 11 and 12). The combination may

serve as a model for two groups situated at the same longitude,

but on opposite hemispheres. This geometry does not lead to any

NP along the z-axis in the sense we used the term NP previously,

whatever the arrangement of polarities may be. To see this

point, we recall from Eqs. (43) and (44) that

Hy =H z = 0, if x = 0 (73)

Furthermore,

Hx = 6Adz {z2+ (y + D)2]-5/2 E [z2+ (y - D)2j-5/2}• (74)
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For y = 0, tVe case of Fig. 11 leads to the conditioL.

(z+ 2)- = 0 (75)

(no NP for finite z-values), whereas in the case of Fig. 12

H = H = H = 0 (76)x y z

along the whole z-axis.

z z
Y , Y

Fig. 11. Configuration of Fig. 12. Configuration of

quadrupoles on y-axis. quadrupoles on y-axis.

To probe a little further in.to this interesting field geometry,

we quote the field components in the midplane y = 0:

H = 60ADD zx (77)
y (x +D 2 + z2)7/2 (

H = H -0 , (78)X 2

Eqs. (77) and (78) show that the field everywhere in the mid-

plane is horizontal, and that it reverses sign at x = 0 in the
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manner illustrated in Fig. 13.

z

Fig. 13. Field in quadrupole midplane.

The simple model calculations presented in this section may be

used in predicting field geometries above sunspots and groups.

First we conclude that IP's within the boundaries of one group

can only occur between spots of equal polarity (Case Ia,p.21),

with the height roughly equal to half the distance between the

poles, corresponding thus to photospheric layers. Adding a pole

of opposite polarity in the symmetry point lifts the NP up

depending on the relative pole strength, This result points to

the fact that the height behavior of NP's strongly depends on

the specific geometrical conditions between spots in a group.

This question will therefore be discussed somewhat further in

the next section.

The computations for the combination of two plane quadrupoles



can be used either for complex groups or, in particular, for the

combined field of different groups. We conclude from Eq. (72)

that the height of the NP (if there is a NP at all; of. Eq. (71))

is approximately equal to the distance between the two centers of

the quadrupoles. For two groups on the same hemisphere, any NP

will therefore be far up in the corona.

The mathematical basis for a detailed discussion of the

fields of two groups on different hemispheres would have to start

from the geometry of Fig. 12. where we find along the whole

symmetry axis zero total field. In the mid plane, corresponding

to the equatorial plane of the sun, the field is uniformly hori-

zontal, however, changing sign on passing through the meridian

connecting the two groups.

8. HEIGHT BEHAVIOR OF NEUTRAL POINTS IN COMPLEX FIELD STRUCTURES

The results of the last section indicate that height and position

of NP's are critically dependent on the geometry of poles in

complex groups. To study this behavior a little further, we begin

by discussing the relatively simple case of two poles of equal



polarity situated on the x-axis at +d. This system of poles

generates a NP at z = d/\/-. Add another pole at x = D with a

ratio n of pole strengths (n < 0). The z - component of the

field then reads ( x = y = 0 ):

H A2z 2 -d/22 2z 2 .- D / 22  (79

z  (z2 +  25/2 n(z 2 D2)5/2

The first term alone (Eq. (51)) leads to a NP at

z = z = d/1V2, (80)
0

as already mentioned. The second term alone, of course, does

not lead to a NP, since it represents the field in the far-away

zone of one single pole. However, the z-component changes sign

at
z = D = D/V2. (81)0

The case of interest for our purposes requires

D >z 0 (82)

since the Pontribution HI to the z-component of the total fieldz

from the first term in Eq. (79) for n > 0,

HI > 0, if z > z (83)
z 0

< 0, z < Z (84)

whereas th,' contribution from the second term,

H II(z= z ) < 0. (85)
z 0
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The effective height of the NP is Increased if n > 0. Reversing the

polarity (n<O) of the added pole in Eq. (79), lowers the NP.

However, the computation so far does not refer to a true NP,

because for z = z
0

H =3nAD 0
x (z2 + D2)5/2"

In fact, the true NP shifts not only in height (z-coordinate),

but also along the x-axis. In order to find this variatioi, we

need the expression corresponding to Eq. (79) for the x-component

of the field. We still retain y 0, but now have to consider

finite values of x:

x + d-1 d
H- - (x- D ) 2 + z 2 112

For the qualitative discussion to follow, the simplifying condition

x << d

may be used which effectively places a certain upper limit on the

combination n D" (cf. Eq. (90)).

Expanding the first two terms of Eq, (87) and taking (88) into

account, we obtain

H I  6zxA El ld 2  - A.
x +Z 2 )5 d2 + z2J 9-VT3 d4



On the other hand,

HI I o -3AnD' 3 z, (90)x

Hence, from the condition

HI + H =0 (91)x x

we see that a third positive pole at x = D (n)O) will push the

NP away and up, an opposite pole (n<O) will push the NP closer

and down (Figs. 14 and 15)

HI =0 H 1 =0x x
Sn>O nO

zI

poe tx = zdadpl

NP H

IHz

Fig. 14. Neutral point for unitFi.1.Nurlpntfrnt

poles at x = id and pole
of strength n(>O) at D.

of strength n(<O) at D.

The sign of HI might seem strange at first sight. In fact,
x

H changes sign when
x

z = 3d (92)

A closer inspection of the field lines around the NP and above



3?

reveals, however, that this behavior is well to be expected.

For detai2s see the illustration in Fig. 16.

z

t \ I,lI

\1 ,' I i
* I

'l ! I, ! i t

jl I I1 / I I3d a

il // 'l\ ,%

NP

x=-d 0 x=d

Fig. 16. Details of H x for two equal poles at x = *d.

We now turn to the case where the third pole is situated on the

y-axis, i.e., at right angle to the plane of the quadrupole, at

y = D, while the two poles are placed as before at x = d and

x = -d. We recall from Eq. (56) add, in particular, from Fig. 7

that

HI =0 , if z = 1 (y2 + d2)I/2 • (93)
z .,17

As contribution from the third pole we have

H2z 2 _ x2  (y - D)2  (94)
z IX2 + (y - D)2 + z2 5/2
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In particular, for x = 0,

H II = 0, if z = (y - D) . (95)
Z

Both condition~s (93) and (95) are satisfied for

f D2  d2

Y -- 2D ' (96)

with the corresponding height coordinate

= 1 D2 + d 2

7 V - 2D (97)

At y = y', the y-comonent of the field will not vanish in gen-

eral (Hx = 0, of course). The somewhat tiresome calculation leads

to t!Le result that

H (y = y') 0 only if D2 = 3 d2  (98)

i.e., a true NP will only exist in a very special geometric:al

arrangement of poles.

So far, our analysis has not been the most general one. As a

matter of fact, it is possible that a true NP exists because the

contribut-ons I and IT cancel each other, but do not vanish sep-

arately. The existence of euch a point is not trivial. Since

its existence may possibly be of importance for the occurrence

of flares, it seems worthwhile to expand the preceding anulysis a

step further.
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The general equations for the geometry under consideration are

H = A.3 (x + d) L- + A-3 (x - d) &- + nA ZE (99)
xr5 r5  r?

Hy A Y+ A I + nA 3 (Y - D)z(100)
y 5 r5  r(Or+ r rD

22  (x + d) 2  2  2d) 2  2
z r5  r5

+

+ nA 2z  - x 2 5 (y D)2  (101)
r D

where

r5 [(x + d)2 + y2 + z215R/2; r j2 + (y .D)2 + z2] 5/2 .(102)

The problem is to find a point (xo, Yo z 0) for which all three

field components vanish. Clearly, H vanishes only forx

x = O, (103)

disregarding the solution z = 0 which is of no interest to us.

Condition (103) has already been used in the simplified analysis

of pp. 37 and 38.

Eqs. (100) and (101) reduce to

Sy + n /y -D2 (104)
(d (y - D)
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0= 2 2z2 _ d2 2 + n 2z2 - (y - D )2  (105)

(d2 + y 2 + z 2 )5/2  (y D)2 + 5215/2

It is clear that in general the solution (0, y0, z) must be

found by numerical means, It is equally clear that the existence

of a physically interesting solution (Yo z real, positive, etc.)

depends entirely on the field constants d, D and n. Recalling

the often very complex space distribution of spots of different

polarities in a group, and the fact that NP's must lie in a very

limited range of heights corresponding to chromospheric altitudes,

if they are in any way responsible for the onset of flares, it is

safe to conclude that all these conditions are hardly satisfied in a

wide majority of cases. It is interesting to think that the occur-

rence of a flare might be connected with the appearance of a NP at

the "right" altitude during the slow changes of spot fields.

Without going into numerical calculations, we conclude this

discussion by deriving limiting expressions for the system of

Eqs. (104) and (105). First, after some algebra, one obtains the

alternate set

Z2 + X-(D 2  d2 ) + (lO6)
Z ly 2D 2

(y. D)2 + z2]5/2 n aD - y (107)
2+d 2 + z 2 = "2y "



Assume that

D > > d, y0 zo (108)

The inequalities (108) are legitimate, since for

D z.,z = d/$'T2 yo .°" (109)

Define

Yo 6 ,Z d + , (110)

and neglect terms of order 2 and higher in 6 and e. If

finally

82 <<dr , (111)

we obtain

Yo dI rn N (112)

and

zo d- + ,3 7 n (113)

The inequality (111) is now readily verified. In addition,

we find that a fortiori

F > > 8 (114)

The discussion can be summarized by stating that the height

of the NP is increased by adding the positive pole, decreased



by an additional negative pole. The situation is analogous

to the case of a perturber in line with the two main poles

(p. 36, Figs. 14 and 15). The horizontal shift, however, is

just opposite: the additional pole will attract the NP if

it is of the same sign, and push the NP away if the signs of

the pole combinations are opposite. Finally, the shift in

height greatly outweighs the horizontal shift.

9. EFFECTS OF DIFFEENT MAXIMUM POLE STRENGTHS IN BIPOLAR GROUPS

It was mentioned in Section 3 that in addition to the EV-asym-

metry due to the solar rotation the influx of solar protons at

the earth may reveal an asymmetry in the original emission angle

(Noyes 1962). One possible reason for such an effect would be

a difference in pole strength of positive and negative polari-

ties of bipolar groups. In order to obtain a qualitative pic-

ture of the implications of this suggestion, we take the model

case where a positive pole of strength one in arbitrary units

is placed at x = -d, a negative pole strength -n is placed at

x = +d. The z-component of the field then reads (Eq. 38) in

the plane y = 0:

H ( - n) -- 2z2 -  dxl, (115)z r5 L 1- nj



where we have replaced r+ and r_ (Eq. 40) in the denominator by

r 2 , x2 + z 2 , (116)

Again, this combination of poles in the far-away zone does not

approach a dipole field, as can be seen, for instance, in the

value of the x-coordinate at which H vanishes:

1 + n d 2n d2 + 2z2] 1/2 (117)0 -(n U n) 2

If

2 n 2 (118)
(- n) 2

we have simply

x0= 2 z (119)

This result is remarkable for several reasons. The locations x

of the abscissa corresponding to Hz = 0 are symmetric with respect

to the axis of the quadrupole. The angle between the lines of

vanishing z-component is

2 tan V2 a i100 (120)

This angle is independent of the relative pole strength n. The

effect seems surprising at first, since for n = 1 we know from

Eq. (48) that xo = 0. We note however, that in this case the

present analysis breaks down, since then Eq. (118) requires an

infinite z-value. In fact, the closer n comes to unity, the
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further out in s-direction we have to go before we can apply

the asymptotic formula (119).

H does not vanish for x = 0. If5

2 > d2  (121)

a condition considerably weaker than (118),

S-A (I - n) (122)Hz z3

Hence, for n < 0, H is positive; for n > 0, it is negative. Az

schematic picture of the field lines is drawn in Fig. 17.
/

IIP

Fig. 17. Field for poles of strength +1 and -n at x = -d

and x = +d respectively.

Mathematically, the analysis carried out so far corresponds to

replacing the hyperbola

(x 1 + nd 2 - 2z2  4n d20 1 - n (123)



which is the exact location of the points of vanishing HRz%

by its asymptotes (119). The net effect of the inequality

of pole strengths (n j 1) is to bend the field lines in such

a way that the axis along which the field is horizontal and

reaches further out, is inclined to the normal and towards

the weaker pole. For heights below the critical value (118)

the inclination is less, going to zero as z approaches 0.

The inclination at large distances becomes independent of

the absolute value of n; however, the characteristic heights

at which the inclination has reached a certain percentage of

its asymptotic value depend on n. The general behavior is

schematized in Fig. 18.

S-, / \

.,/ / =O=e

- /- - -

7N

Fig. 18. Inclination of line along which field is horizontal,

for the case of two poles of unequal strength.



In concluding, we investigate the characteristic distances

involved in (118) for typical conditions on the sun, postulating

that

2 > 2 n 2
z = z =100 2 d (124)

For a typical sunspot group,

106 km 1.5 R 1.90

d=104 km, z0  9 for n = . (125)

190,000 km 13

Grotrian and KUnzel (1950) concluded from a statistical analysis

that the magnetic flux of the preceding spots of a bipolar group

is on the average three times the flux of the following spots.

However, considering all the difficulties in obtaining accurate

measurements of maximum field strengths and spot areas at the same

time, this value can only mean an estimate of orders of magnitude.

Whatever the average value of n is, coronal rays and particle

paths will tend to be inclined towards the east on the sun,

reaching about 550 from the normal at larger distances. The ef-

fect is in the same direction as the bending of field lines due

to the solar rotation, if it is assumed that this rotation is not

rigid in interplanetary space. In addition, an EW-asymmetry in

the projected positions of sources in the corona follows, in the



sense, that more sources should be observed east of the central

meridian, but only if identified with active regions on the sur-

face. The total amount of coronal sources is, of course, not

affected by this inclination.

At any rate, whatever the net effects of this inclination on

terrestrial events may be, any such asymmetry would depend on

the degree of asymmetry in the magnetic field structure of

underlying spot groups.

At present not enough material is available to corroborate

this suggestion by statistical data. Once more observations

are made, such a study may be of some value.

10. DISCUSSION OF PHOTOSPHERIC OBSERVATIONS

In the following sections, a few applications of the field models

are discussed which might be suitable for observational tests.

Admittedly, the suggestions to be advanced are rather sketchy;

however, it is felt that progress along these lines could be made

later. The purpose of this discussion is therefore not so much

to arrive at specific results, but to demonstrate the possibili-

ties an expanded analysis on the basis of more material might

present. We begin by discussing a typical case of photospheric

observations.
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550

// S20 f.-,\s1oo044 25*E N50 )
-- / ...... ., S2O

\N1M  4 N.k-
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I i--. --

III- , 4!'AI N:.A/ /
~I~'&N0 ~~~ /' <1

N5 NI00 N50 550 S100
Fig. 19. Isogauss contours in a spot region (Michard et al.,

1961).

Accurate observations of the magnetic field distribution in sul-

spot groups are still scarace. We have chosen as a tezt example

of how our idcas can be applied to the interpretation of observed

field structures, the small spot group described in detail by

Michard et. al., (1961). In Fig. 19 the essential features are

summarized. The solid lines are the photographically observed

penumbra rims of the sunspots, the dashed lines are isogauss lines

corresponding to 50, T0, 200 and 400 Gauss. Points of later

interest are identified in Fig. 20. The quoted numerical values

correspond to field components in the line of sight, i.e., the

directioa coLnecting the photospheric location and the observer

on the earth.

S N

C N
E

FS

Fig. 20. Identification of points of interest in Figure 19.
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The following observations should be explained:

(1) The maximum field strengths are shifted towards the west

as compared with the white-light observations.

(2) The amount of shift differs characteristically for the

spots A and B on one side, for C and D on the other side. The

scale is su:h that the distance between the two extreme spots

is about 5.3 on the sun.

(3) The double N-poles corresponding to A and E, and the two

S-poles corresponding to B and F show separate maxima, whereas

the (strongly) shifted maximum corresponding to the two N-spots

C and D is single.

(4) There is a S-pole region in the neighborhood of spot C

("enclave de polarit4 S anormale"). Its strength is consider-

ably less than the maxima connected with A or B.

Before we discuss these details we should like to cite the authors,

saying that the isogauss lines as well as the spot areas carry con-

siderable observational error, due to the intrinsic difficulties of

magnetic field measurements, and to the rather inferior seeing con-

ditions on that date (23 April 1960). In the spot group a flare of

importance 1 or 1+ developed, and Michard et al., found that no

change in the field configuration outside of statistical fluctua-

tions due to seeing conditions occurred. The authors emphasize

that this criticism against their own work applies as well to all

other field measurements, which very often report minute details

that may well be spurious. We may guess that relative spot



'0

positions are uncertain by about the spot's diameter, with at

least the same error for the isogauss lines.

Summarizing the discussion to follow we state that

(1) the shift of the field maxima with respect to the photo-

spheric spot locations is due to the angle between the line of

sight and the radial direction on the sun; that

(2) the difference in am unt is caused by the fact that (C+D)

is affected differently than the essentially single poles A and

E, or B and F; that

(3) the appearance of A and E as single poles is due to the

greater relative distance between A and E as compared with C and

D, and/or possibly to a difference in height of the lcations of

generating current loops; that

(4) the appearance of a S-pole between E+A and C+D reflects

the fact that the level in which the major portion of the spectral

line used by Michard et al., corresponds to a height below the NP

generated by the two quadrupoles A+E and C+D, whereas the corres-

ponding NP's for A and E, C and D, and B and F are all below this

level.

The fact that the magnetic field measured at the location of the

(N-pole) spot C is S-polar is then readily explained by the very

nature of the measurements. The intrinsic observational uncertain-

ties, however, make it not worthwhile to discuss in detail the mutual

influences of, say, the spots A, C, D, E on the NP between B and

F. We therefore restrict our considerations to a qualitative
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analysis, giving numerical illustrations as we go along.

In order to verify the above statements we first quote Eq. (51)

which shows a linear dependence of the height z of the NP on

the distance d between two spots of equal polarity. This is the

basis of points (3) and (4)f

In Fig. 21, Hz/A is plotted as a typical example for the combina-

tion of two plus poles at x = 5 and x = -5, and for a height z = 2.

The appropriate formula is Eq. (38) with the positive sign; the

NP would be situated at zow3.5. Note that the maximum intensity

of the negative field betwee, the poles is only about 2 percent

of the positive field strength above the poles.

The opposite case, z > zo, is illustrated in Fig. 22 for z = 12.5

and the same position of the poles. For comparison, a single

pole with the same strength as one of the others and situated at

x = 0 is plotted in Fig. 23. Note that the maximum intensity of

the two poles (5.21x10-4 units) is only slightly above the maximum

of the intensity of a single pole (4.09xi0"4 units).

Finally, we check the behavior of the maxima as a function of

x(y=O). Differentiating Eq.(38) with respect to x results in

.--- 22 -( l
aH = 0 -2(x + d) -5(x + d) z2 _ (x+ d)2

ax 2+ (x + d) 2

-2(x - d) -5(x - d) 2 s 2 - (x- (126)z2 + (x - d)2
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Fig. 22. H z/A at z =12.5 for two positive poles at x =+5

and -5.
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Fig. 23. H /A at z =12.5 for a positive pole at x 0.



Eq. (126) is identically satisfied for all values of z if x = 0.

This point corresponds to the minimum. The general solution

cannot be obtained in closed form; however, we see that a maximum

occurs at

x = * d if z = d, (127)

whereas a maximum occurs at

x = * d/2 if z = 5d/r2 3.55 d . (128)

This behavior is schematically shown in Fig. 24.

z

Maxt I\Max
M it \

N P/ Mmn
/\

-d + d I

Fig. 24. Positions of maxima of H for equal poles atz

x = +d and -d.

Not at all considered is a difference in height of the

generating current loops, since this effect can certainly not be

deduced from Michard's observations.



Turning now to the difference betwcen spot locations and po i-

t.Lons of field maxima, we note that on April 23 the inclination

of the sun's rotational axis is about -5.3, presenting the image

shown in Fig. 25 to an observer on the earth. Because of the

sun's inclination the effective angle between the line of sight

and the EW-line is reduced to about 15, whereaf; the angle be-

tweei, the NS-line and the line of sight is the full 250. In the

following, the effects of this inclination are studied, taking

the average angle of 200 a- a test case.

N

/ E25 °

S

Fig. 25. Position of spot group on the sun, April 23, 1960.

(Michard et. al., 1961)
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We restrict this model calculation to the plane y = 0, and then
need only the components H and R . Taking the two cases des-

x z

cribed previously (Figs. 22 and 23) and plotting field amplitude

and direction, we obtain the field components in the line of

sight as given in Figs. 26 and 27. The schematic diagrams show

the predicted field distribution around the quadrupole and around

the single pole. The similarity to Fig. 19 is obvious: the rela-

tive shift for the quadrupole is considerably stronger than the

shift for a single pole. Exactly this behavior was found under

points (1) and (2), p. 50.

A continuation of this type of study with more observational

material would be highly desirable, since it cannot be ruled out

that the rather encouraging results of this section are fortuitous.

A study of the magnetic field distribution as reflected by different

lines, originating in different levels of the photosphere or

chromosphere, would add direct observational evidence for the

height variation of the fields. The great difficulties of the

field measurements make it probably unpractical to look for

statistically significant variations in field strength. However,

it may be possible to study the relative frequency of "irregular"

regions of opposite polarity. Since we believe that many field

measurements refer to layers very close to NP's, a small variation

in effective height may result in cons-.derable changes, in particu-

lar around "irregular" regions.
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sight. Single pole on x-axLs.



With the relatively simple, but apparently rather powerful

mathematical model developed in the first sections, it should

be possible to predict the approximate position (and height)

of NP's in spot groups of known geometry more accurately than

is possible with the qualitative methods employed previously.

On this basis it may be possible to come to some conclusions

as to the correlation between NP's and points of origin of

flares.

11. LOCAL FIELDS IN THE CORONA

All considerations on which we elaborated in the preceding

sections assumed that no electric currents flow above subphoto-

spheric regions. This is certainly not quite correct, as has

been pointed out already by Gold (1958). The reason is that

force-free fields in the outer corona can never prcduce the

observed departures of the density distribution from hydro-

static equilibrium. If these structures are tied in with mag-

retic fields, the fields must deviate more or less from the

force-free type. Since the density increase is stable over

relatively long periods of time, it must be accompanied by mag-

netic fields which hold it in place, and these fields originate



in local electric currents in the corona.

The problem can therefore be put in the form of asking what

kind of local magnetic field would be required to produce a

stable density distribution of the type observed, for instance,

in coronal streamers.

A complete and correct answer to this question involves prohibi-

tively complex mathematics and is therefore far beyond the scope

of this report. A few general theoretical remarks will be added

in an Appendix. We prefer to advance in the remainder of this

section a suggestion as to a possible starting point for local

fields due to the underlying, admittedly force-free, field of

the spot group. In order to keep in close contact with observed

features, we summarize briefly the relevant features of the en-

hanced radio radiation of the slowly varying type.

Solar disturbances ("Centers of Activity") emit above 600 Mc/s

a type of radio radiation which is almost certainly thermal in

origin (i.e. bremsstrahlung), and whose intensity is markedly

above the background radiation of the chromosphere and lower

corona. The increase in brightness temperature is due to the

fact that regions above the chromosphere contribute an appre-

ciable amount to the total radiation. Since the observed

radiation temperatures (emitted intensity per unit area on the

sun equated to a Planck function and expressed through
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Rayleigh-Jeant' law in the form of temperatures) are in

general well below the kinetic temperature of the undisturbed

corona, i.e., approximately 2 x 106oK, it is generally

assumed that the emitting regions are optically thin, or at least

not completely opaque. The uncertainty in the calibration as well

as the difficulties encountered in unfolding the interferometer

pattern, however, make an accurate estimate of the optical depths

involved at present impossible. For a detailed discussion see

Newkirk (1961).

The contribution of the coronal rays above solar disturbances,

i.e., the "activity centers" connected with sunspots, can be

either attributed to a-local increase in kinetic temperature

(Waldmeier and Mueller, 1950), or to a locally increased density,

possibly both. Newkirk has presented arguments in favor of an

increase of the density alone. We shall follow his suggestion.

The correlation between the occurrence of the Slowly Varying

Component (SVC) and the plage area surrounding the sunspot group

is very good, in particular at higher frequencies, and better

than with any other phenomenon of the centers of activity. It

is therefore generally concluded that the SVC originates in

coronal condensations above plage areas. There is an additional

observation in favor of this concept, namely, the cosine-varia-

tion of the area emitting the SVC as a function of position on



the sun. The obvious interpretation of this observation is

to assume a disk-like shape for the emitting region.

The postulated similarity of the shape of plage areas and the

sources of the SVC is not easily understood. They are, of

course, not simply identical. In the first place, plage areas

and faculae are photospheric and chromospheric phenomena with

no observed correspondence in the coronal behavior. It would

therefore appear that postulating disklike structures in the

corona requires a separate explanation, in the sense, that the

flatness of the SVC source must be understood in terms of a

physical theory, whereas thic structure is rather trivial in

the case of the essentially plane plages: while the plage

area (being chromospheric in origin) is limited to a thin

shell-type medium, the source of the SVC is embedded in the

corona whose geometry is decidedly three-dimensional. Secondly,

the statistical correlation between the hcrizontal extent of

the sources and the plage areas does not necessarily point to

any direct physical connection, but merely suggests that the

source of the SVC is larger than the spot grcup to which it is

connected. The same is true for the longevity of both the plage

and the SVC source. On the other hand, there is no counterpart.

in the behavior of plages to the daily changes observed in the

SVC, as described for instance in the radio heliograms (1420 Mc,

Sydney), published in Vol. XXII of the Annals of the IGY.
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We shall suggest that the source of the SVC is due to the

magnetic field configuration above sunspot groups and even

between adjacent groups. A good example of this latter type is

furnished by the chain of spots in the N-hemisphere on December

22 and 23, 1957. Whereas no other phenomenon has apparently

undergone significant changes, except maybe the magnetic polari-

ties not yet published, the SVC source changed from a doubly-

peaked shape, with the maximum between the two major groups.

The spatial resolution of the antenna is considerably better

than the quoted details (half-power points approximately 30

in both coordinates).

It may be argued that the relatively weak polarization of the

SVC speaks against a dominant influence of the magnetic fields.

We shall presently show, however, that the source of the SVC in

our concept is situated at the minimum of the magnetic field and,

moreover, in a rather complicated field structure which would

make a uniform polarization rather unlikely.

In order to investigate this suggestion in some detail, we con-

sider as a typical example the set of two plane quadrupoles, dis-

cussed in Section 6. Offhand, this model is best suited to re-

present two separate spot groups, whereas the majority of strong

SVC sources lie above bipolar groups. In the latter cases a very

complex field structure close to the chromosphere, in general with

several NP's, can be expected. The regions around these NP's

would then be the place of the source of the SVC, in
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the manner outlined below for the two quadrupoles. The

NP's above single groups are of course at a lower height, hence

in regions with higher density and lower kinetic temperature.

From theory alone, it is impossible to predict offhand whether

the combination of these two qualities on the average leads to

a higher or lower value of the brightness temperature as compared

with a source above two spot groups. Statistical investigations

of this point are clearly needed.

The magnetic field of the two combined quadrupoles reads

H = 2Ad * 3z + - +D + x -D)] (129)
S-r r5 r (10)

H= -2Ad" 15yz (130)x + D + r-- D(-

= 2Ad x +D [2 + 5 (2z2  y2 - x + D)2]

+xr [2+ -- 2z 22 - (x - D)2 (131

with

r =(x + D)2 + y2 , r 2 = (x - D)2 +y 2 + z2 (132)
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It is assumed that the field is computed in the far-sone of

each individual quadrupole, but not of the system (of. Section 6).

The direction of the field is the same for both quadrupoles,

situated on the x-axis at x a 4 D.

Some of the properties of this system have been discussed

previously (Fig. 9). For instance, there is a NP in the

plane of symmetry x a y a 0 at z = 2D [Eq. (72).] It is inter-

esting to note that the height of this NP is considerably less,

if the assumption D > > d (Eq.[67)] is dropped. As an example,

we quote the height of the NP

z = 1.84 D (133)

for an arrangement of single poles as illustrated in Fig. 28.

I I I I- D-,-1.- D-i'- D-01
66 6 6

Fig. 28. Arrangement of single poles producing a NP at

z = 1.84 D.



In the plane y 0 O, the field has schematically the foa shown

in Fig. 29.

* *

Fig. 29. Field of two combined quadrupoles in the plane

y = 0.

We have carried out numerical calculations for the case D * 10,

and plotted in Fig, 30 the square of the total field strength

in units of 2Ad in the plane y = 0:

2 2  2 -- 
2  2(13

x z ~4A 2d 2  (3

The remarkable feature of Fig. 30 ie the region of low field-

strength in the neighborhood of the NP. Clearlyt charged

particles will be trapped at that location in much the same

manner as in a mirror geometry in thermofusion experiments.
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The calculations on which Fig. 30 is based concern strictly

force-free fields. Due to the trapping, however, the density

at the NP must increase, leading to local coronal fields

which will certainly change the field structure. Intuitively,

one would expect the net result to be an expansion of the low

field region, hence, an increase of the excess electron (and

ion) density in the neighborhood of the NP. A steady state

will be reached in the zone of confinement when diffusion

across the field lines equals the number of particles flowing

in.

It is very suggestive to hypothesize that a change in the

general field structure may compress the region of confinement,

resulting in an increase in kinetic temperature to points at

which thermo-nuclear reactions begin. This point of view has

been stressed several times by Severny as a possible cause for

solar flares. The main argument against this idea is the ab-

sence of strong changes in the photospheric magnetic field

structure during and probably even before the onset of flares.

We believe that no such drastic changes would be required in

the geometry considered here (and qualitatively as well by

Severny). It should be mentioned though that so far attempts

to locate sizable quantities of deuterium in solar flares have

failed.

There is a simple Source for the postulated particle inflow.

Extending the field model in the plane x = 0 to finite values
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of y, we find that the NP of Eq. (72) really in the intersection

of a one-dimensional "NEUTRAL LINE", along which the total field

strength vanishes with the plane y a 0. In fact, it is easy to

see from Eqs. (129) - (131) that for

x = 0: H = H =0 (135)y 5

whereas

H = 2Ad , 6z [ 15D 2  ] (136)[(D + y2 + z2)5/2 (D2 + Y2 +z2)7/2 "

H vanishes for all
x

22z = 4D2 . y2 * (137)

The Neutral Line touches the plane z = 0 for

y = 2D . (138)

A schematic picture of the quantity P2 in the plane x a 0 is

given in Fig. 31.

We see that the region of small field intensity lies in the

symmetry plane of the two quadrupoles, reaching a maximum

height of 2D, and arching back to the photosphere at y = + 2D.

It is suggested that from the photosphere and chromosphere the

particles enter the region of confinement. It is conceivable

that the higher density of the chromosphere is maintained throughout

this region, thus causing the coronal condensation responsible
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for the SVC.

With an assumed separation of 100 between two spot groups on

the sun, we find the NP at approximately 100 000 km height,

This value is quite reasonable if one recalls that in an actual

case the field of two spot groups at the NP is not yet in the

far zone, resulting in an effectively lower value for the height

of the NP.

An additional consequence of interest of this hypothesis is that

olie would expect the source of the SVC to be on the average

elongated in the direction approximately perpendicular to the

equator. The radio heliograms published in the Annals of the

IGY seem to support, at least qualitatively, this conclusion.

A statistical analysis of the data seems possible.



APPENDIX

LOCAL FIELDS AND CURRENTS IN THE CORONA

In Section 11 the problem of deriving local magnetic fields

in the corona from a (supposedly) known density .istribution

was mentioned* and it was stated that for mathematical reasons

detailed calculations are beyond the scope of this report. We

would like to clarify this point by considering the general

set of electromagnetic equations relevant to the problem.

Assuming a steady state, (a/8t = 0) we have from Maxwell's

equations

c (v x = , , (139)

and from the equation of motion

;j x H =Vp + p. (140)

Eliminating j leads to

H x (vxH)-4n 7p + 4g P (141)

H is the total magnetic field at any point in the corona, j

the specific current in e.s.GGS units, p the pressure, I the

gravitational potential, g the gravitational acceleration (in

direction of the negative z-axis), p the matter density. The

general equations and the physical characteristics of the

quantities are discussed by Spitzer (1956), p. 20.
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We split the magnetic field into a force-free part due to

subphotospheric currents g and a local coronal field He,

so that

0 + xI = Vx 0.o, VxH*+o, (142)

and

. * 0 (143)

everywhere.

Since

p = Nt KT (144)

(Nt is the total number of particles, T the temperature, I

Boltzmann's constant), we have for an isothermal corona

vp = KT • vNt . (145)

Under coronal conditions (complete ionization, 0.85 hydro-

gen, 0.15 helium in atomic numbers)

p = 1.87 NKT, (146)

where N is the number density of electrons, and

p = 0.87MP, (147)

where mH is the mass of the proton.



Splitting again p and p and, thus, N into a part No referring

to the "undisturbed corona" and a part N* referring to the

additional density in the condensation, we have

o. 0 g=o0 (148)

so that

p + pg - l.87KT VN* + 0.87m.g N* . (149)

Retaining p and p for brevity, we have instead of Eq. (141)

Hx(VxH) A , (150)

where

A =-4 vp + 4n p . (151)

are treated as known functions.

If vx H ,

H (V x H) =0. (152)

The vector system of equations (150) - (152) has the solu-

tion (Madelung 1957)

_ x H x H (g-- (153)

Condition (152) means that the magnetic field is perpendi-

cular to the electric currents, i.e., that any current com-

ponent parallel to the magnetic field is neglected. Such a



7"

component wouldg of course, not be affected by the field.

Hence no immediate difficulties arise from the use of

Eqs. (152) and (153).

Eq. (153) represents an integral equation in vector form

which hardly can be solved with any reasonable amount of

effort. We tentatively linearize the system by postulating

that

H > > H* (154)

which brings Eq. (154) into the form

-4*0

V x H - 0 (155)

Because of Eq. (143), Eq. (155) represents the well-known

problem of a vector potential and has the solution

H = t J...V" .4V ,(156)

where r is the radius vector to the observer's point to

which the vector V refers, r is the radius vector to the

field point which is the subject of the integration over

all space.

For the linearized form, Eq. (152) is not self-evident any

more. As a matter of fact, it now has the significance of a

restriction of the physical situation which ought to be

justified for each case separately, i.e., for each pair of
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vectors g and . A solution of this difficulty will be

suggested below.

Eq. (156) can be written in a slightly less cumbersome form

by carrying out the curl-operation. Noting that the V -

vector operates only on the radius vector r" in the denomi-

nator, we find that

H* f(rr')x H xA dV (157)• (c ) 2  r - -r*13'

Writing Eq. (157) in more detail, one has to solve

* = f ([* -dV (18
H )- r' H x - P)J ,- (158)

For H one may substitute any of the fields discussed in

the preceding sections, preferably the field of a bipolar

group (quadrupole field) of Eqs. (42) to (44).

For a given density distribution, Eq. (158) leads to a field

which is strictly of coronal origin. One could now think of

starting an iteration procedure, introducing the field

+ ~H* on the right-hand side of Eq. (160), thus obtaining

a new solution i, etc. If the procedure converges, the

final correct solution would automatically fulfill condition

(152).
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Without going into tedious numerical calculations it is not

obvious in what direction the coronal field H* and the fol-

lowing iteration products would alter the force-free field

H . The method itself, however, seems sufficiently interest-

ing to be mentioned.
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CONCLUSIONS

1. It is shown that a model ascribing the magnetic field of

sunspots to subphotospheric currents, idealized by loop cur-

rents underneath each spot, leads to a satisfactory repre-

sentation of observational data on photospheric layers. For

all practical purposes, the field expressions in the far-zone

approximation are sufficient and which for a single sunspot

are identical with the field of a dipole whose axis is per-

pendicular to the solar surface.

2. The field of the simplest bipolar group consisting of two

single spots of opposite polarity is of quadrupole character in

the far-zone, i.e., the total field strength varies as the minus

fourth power of the radial distance. Field lines in the upper

half-plane arrange themselves in a cone of 90* aperture, pro-

vided the pole strengths of the two major spots are equal. If

the pole strengths differ, the field becomes asymmetric, result-

ing in an inclination toward the weaker pole. The angle of in-

clination with respect to the normal direction is approximately

550 at great distance, and is independent of the relative pole

strength. Only the height level at which this inclination is

effectively reached depends on the relative pole strength.

3. If more than one spot of the same polarity is present



in a group, neutral points of vanishing total field strength

occur. The height of such a neutral point depends on a variety

of parameters, notably, spot radii, distances between spots,

relative pole strengths, etc. In most simple cases, however,

the height counted from the plane of the current loops is of

the same order as the distance between the spots, thus being

very sensitive to small changes in the position of spots. The

same conclusion can be drawn from more complicated field geo-

metries due to three or more spots.

4. A detailed comparison of photospheric measurements by

Michard et al., loc. cit., with our model shows that all major

observed features are at least qualitatively represented by

the model. It follows that a model making use of force-free

fields in photospheric layers does not lead to grave errors,

and might therefore be extended with a fair chance of success

to predict fields in the outer atmosphere, notably the corona.

One obvious application of this principle is the direct calcu-

lation of occurrence and height of neutral points for actual

spot geometries.

5. It is anticipated that the density in the neighborhood of

neutral points is strongly increased due to the trapping of

charged particles. From our model calculations follows indeed
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a mechanism for feeding particles into the region of confine-

ment. It is admitted, however, that local non-forcefree cur-

rents will probably play a dominant role in the steady state

maintenance of these coronal condensations.
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